eeeeee

Brent's Theorem

= Assumption when formulating parallel algorithms: we have
arbitrarily many processors

= E.g., O(n) many processors for input of size n

= Kernel launch even reflects that!
- Often, we run as many threads as there are input elements

- l.e., CUDA/GPU provide us with this (nice) abstraction
= Real hardware: only has fixed number p of processors
= E.g., on current GPUs: p = 200—-2000 (depending on viewpoint)

= Question: how fast can an implementation of a massively parallel
algorithm really be?

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum

S

' CG e
VR X

22

= Assumptions for Brent's theorem: PRAM model
= No explicit synchronization needed

= Memory access = free

= Brent's Theorem:
Given a massively parallel algorithm A; let D(n) = its depth (i.e.,

parallel time complexity), and W(n) = its work complexity.
Then, A can be run on a p-processor PRAM in time

W(”)J + D(n)

T(n,p) < {

(Note the "<")

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 23

eeeeee

= Proof:

= For each iteration step i, 1 < i < D(n), let Wi(n) = number of operations
in that step

= Distribute those operations on p processors:

- Groups of [@1 operations in parallel on the p processors

- Takes [Mw time steps on the PRAM

= Overall :
- B2 FH A0 2]

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 24

eeeeee

Y Application of Brent's Theorem to our Optimization of Prefix-Sum

= Assume that the optimized version loads f floats into local registers

= Work complexity:

= Without optimization: Wi(n) = 2n

= With optimization: ~ Wa(n) =22 + 2.f = n(1+ 2)
= Depth complexity:

= Without optimization: D;(n) = 2log(n)

= With optimization: ~ D,(n) = 2log(7) +f = 2logn —2log f + f
= If f=2, then W, = W7 and D = D4, i.e., we gain nothing

= |f f > 2, speedup of version 2 (opt.) over version 1 (original):

To(n) “A2+ Dy(n) 22 of

Y
Y —

Ti(n) Y2y py(n) 2(1+2) 42

Speedup(n) =

[N

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 25

eeeeee

Y Other Consequences of Brent's Theorem

Obviously, Speedup(n) < p

* In the sequential world, time = work: Ts(n) = Ws(n)

In the parallel world: Tp(n)

220 4 D(n)

Ts(n) _ Ws(n)
T~ o

" Our speedup is Speedup(n)

Assume, Wp(n) € Q2(Ws(n))

I.e., our parallel algorithm would do asymptotically more work

Ws(n)
2(Ws(n))+ D(n)

because, on real hardware, p is bounded

" Then, Speedup(n) = >0 asn— oo

= This is the reason why we want work-efficient parallel algorithms!

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum

26

eeeeee

Now, look at work-efficient parallel algorithms, i.e.

We(n) € ©(Ws(n))

Then, W(n) W (n)
n pyvvin
Speedup(n) = 75 +D(n) W(n)+pD(n)

p

In this situation, we will achieve the optimal speedup of p,

so long as ;
) O%V((n)))

Consequence: given two work-efficient parallel algorithms, the
one with the smaller depth complexity is better, because we can
run it on hardware with more processors (cores) and still obtain a
speedup of p over the sequential algorithm (in theory).

We say this algorithm scales better.

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum

27

eeeeee

W Limitations of Brent's Theorem

= Brent's theorem is based on the PRAM model

= That model makes a number of unrealistic assumption:
= Memory access has zero latency
= Memory bandwidth is infinite
= No synchronization among processors (threads) is necessary

= Arithmetic operations cost unit time

= With current hardware, rather the opposite is realistic

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 28

U Radix Sort, Based on the Split Operation

= The split operation: rearrange elements according to a flag

<— Flags.

1 0 0 1 0 0 1 0
% - There could be
= ﬁ\ payload data, too
(omitted here)
1 1 1

0| O 0 0 0

= Note: split maintains order within each group! (i.e., it is stable)

= Radix sort (massively parallel):

radix sort(array a, int len):
for i = 0...n-1: // important: go from low to high bit!

split(i, a) // split a, based on bit i of keys

where split (i,a) rearranges a by moving all keys that have
bit i = O to the bottom, all keys that have bit i =1 to the top
(lowest bit = bit no. 0)

= Reminder: stability of split is essential!

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 42

eeeeee

Algorithm for the Split Operation

= Split's job: i
= Determine new index for each element &

= Then perform the permutation

a':
= Algorithm (by way of an example):

= Consider lowest bit of the keys i

1. Compute "0"-scan (exclusive): 3

fi=#"0"sin (ag, ..., di-1)

2. Set F = total number of "0"s f:
Jfaaat1l a3, 1=0 F=4
| an-1=1 drorors:

3. Ifaj=0— new pos. d=f; dor s

4. Ifaj=1—>new pos.d=F+ (i—f;) d:

- Because i—f;j=#"1"s to the left of i

G. Zachmann Massively Parallel Algorithms SS June 2013

0 1 2 3 4 5 6 7
4 7 2 6 1 5 1 0
| ;7
Y N— ¥V ¥y ¥
4 2 6 0 7/ 1 5 1
0 1 2 3 4 5 6 7
100|111 ({010|{110|001 {101 {001 |000
0 1 1 2 3 3 3 3
0 1 2 3
4+(1-1) 4+(4-3)4+(5-3)4+(6-3)
0 4 1 2 5 6 7 3
Prefix-Sum 43

-

z

n

3

n

H]
D

= A conceptual algorithm for the "0"-scan:

* Extract the relevant bit a: [100(111/010[110|001|101 |001 | 000
(conceptually only)

= Invert the bit a1l 11 o | 1 110101 0 1

= Compute regular scan
with +-operation fflof1|1]2]3]3]|3]3

= |n a real implementation, you would, of course, implement this
as a native "0"-scan routine!

G. Zachmann Massively Parallel Algorithms SS June 2013 Prefix-Sum 44

